New mechanism for bubble nucleation: Classical transitions
نویسندگان
چکیده
منابع مشابه
Bubble-Nucleation Rates for Cosmological Phase Transitions
We estimate bubble-nucleation rates for cosmological phase transitions. We concentrate on the evaluation of the pre-exponential factor, for which we give approximate analytical expressions. Our approach relies on the use of a real coarse-grained potential. The consistency of the calculation implies that the coarse-graining scale must be larger than the typical scale of the critical bubble. We s...
متن کاملSimple improvements to classical bubble nucleation models.
We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal...
متن کاملBubble-Nucleation Rates for Radiatively Induced First-Order Phase Transitions
We present a consistent calculation of bubble-nucleation rates in theories of two scalar fields. Our approach is based on the notion of a coarse-grained free energy that incorporates the effects of fluctuations with momenta above a given scale k. We establish the reliability of the method for a variety of two-scalar models and confirm the conclusions of previous studies in one-field theories: L...
متن کاملBreakdown of classical nucleation theory near isostructural phase transitions.
We report simulations of crystal nucleation in binary mixtures of hard spherical colloids with a size ratio of 1:10. The stable crystal phase of this system can be either dense or expanded. We find that, in the vicinity of the solid-solid critical point where the crystallites are highly compressible, small crystal nuclei are less dense than large nuclei. This phenomenon cannot be accounted for ...
متن کاملElectroweak Bubble Nucleation , Nonperturbatively
We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer’s approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor. We test the technique by applying it to the electroweak phase transition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2009
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.80.123519